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IEEE Covers All Areas of Technology

More than just electrical engineering & computer science

* Aerospace & Defense * Information Technology
» Automotive Engineering * Medical Devices

» Biomedical Engineering * Nanotechnology

* Biometrics * Optics

* Circuits & Systems * Petroleum & Gas

* Cloud Computing * Power Electronics

« Communications » Power Systems

« Computer Software * Robotics & Automation
* Electronics « Semiconductors

* Energy * Smart Grid
 Engineering * Wireless Broadband

* Imaging and many more
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Traditional Academic Searching

Keyword/Boolean search

= Controlled language search

= Ability to combine sets

# Can refine search set by limiters such as AND, OR & NOT
m

Some databases support nesting (combining long search strings)

IEEE. org | IEEE Xpiore Digital Library | IEEE-S4 | IEEE Spectrum | More Sites Cart(0) | ¥elcome Yuling Zhou W

IEEE Xplore®
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Example of Boolean Search

ALL=(surgical OR curve OR segment) AND suture
AND

(((intervertebral OR cutting OR member OR
arcuate OR guide)

NEARS (bone OR seal)) SAME (tissure OR jaw*))
AND (Instrument OR

cannula*1) AND DP>=(19930101) AND IC=(HO1L
39/02 OR HO1L

39/12 OR HO1F 38/14)

¥ IEEE




Semantic Search: The Way Forward

= semantic search relies on natural language queries to
reduce search complexity while returning concepts (and
thus, prior art) the researcher may have otherwise
missed

A surgical cannula with curved segments
used to guide a medical instrument
through a curved or bowed path

¥ IEEE




How does Semantic Search work?

= a Deep Belief neural network extracts concepts and
meanings from patent and related literature. Neural
networks are named for their similarity to processes of the
human brain. A neural network enables machine learning,
which is when a computer examines a large amount of
data and derives meaning from that data.

= A neural network is a semantic model, where complex
topics are expressed as mathematical vectors of the
common concepts found during the Al analysis. The neural
network is the engine that classifies concepts within bodies
of rich data — similar to the human brain.
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Multiple ways to start a search

Displaying results 1-25 of 369 for deep learning * Image Retrieval x
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Knowledge of the “art”

Displaying results 1-25 of 806 for ((deep learning) AND face recognition)
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(CVPR), 2017 IEEE
Conference on (22)

Computer Vision
Waorkshop (ICCVW),
2017 IEEE
International
Conference on (21)

Transactions on {5)

Select All on Page Sort By: Relevance =

Beyond Planar Symmetry: Modeling Human Perception of Reflection |
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Christopher Funk; Yanxi Liu

2017 IEEE International Conference on Computer Vision (ICCV)
Year: 2017
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Machine learning on FPGAs to face the IoT revolution a
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2017 IEEE/ACM International Conference on Computer-Aided Design
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Identify most cited papers
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Follow the lead, deep dive

Browse Conferences = Computer Vision and Pattern R... @ Back to Results | Mext =
FaceNet: A unified embedding for face recognition and Related Articles
ClUStEI‘II‘Ig Fast motion planning for multiple

moving robots

471 7 2226
View Document Paper Patent Full Inverse kinematics of redundant robots
Citations  Citations  Text Views using genetic algorithms
View All
~ Florian Schroff ; ~ Dmitry Kalenichenko ; + James Philbin View All Authors

Author(s)

Abstract Authors Figures References Citations Keywords Metrics Media

Abstract:

Despite significant recent advances in the field of face recognition [10, 14, 15, 17], implementing face verification and recognition
efficiently at scale presents serious challenges to current approaches, In this paper we present a system, called FaceNet, that directly
learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure offace similarity.
Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard
technigues with FaceMet embeddings asfeature vectors. Our method uses a desp convolutional network trained to directly optimize the
embedding itself, rather than an intermediate bottleneck layer as in previous deep learning approaches. To train, we use triplets of
roughly aligned matching / non-matching face patches generated using a novel anline triplet mining method. The benefit of our
approach is much greater representational efficiency: we achieve state-of-the-artface recognition performance using only 128-bytes
perface. On the widely used Labeled Faces in the Wild (LFW)} dataset, our system achieves a new record accuracy of 99.563%. On YouTube
Faces DB it achieves 95.12%. Our system cuts the error rate in comparison to the best published result [15] by 30% on both datasets.

Published in: Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on EE
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An illustration of the feature extraction Convnet structure. The length, width, and Top: ten face regions of medium scales. The
process. Arrows indicate forward height of each cuboid denotes the map five regions in the top left are global regions
propagation directions. The number of number and the dimension of each map for  taken from the weakly aligned faces, the
neurcns in each layer of the multiple deep all input, convolutional, and max-pooling other five in the top right are local regions
convnets are labeled beside each layer. The layers, The inside small cuboids and squares  centered around the five facial landmarks
deepid features are taken from the last denote the 3d convolution kernel sizes and (two eye centers, nose tip, and two mouse

hidden layer of each convnet, and predict a
large number of identity classes. Feature
numbers continue to reduce along the
feature extraction cascade till the deepid
layer

7]

the 2d pooling region sizes of convolutional  corners). Bottom: three scales of two
and max-pocling layers, respectively. Neuron  particular patches

numbers of the last two fully-connected

layers are marked beside each layer
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Abstract

Deep learning methods, especially convolutional neural networks have achieved significant success in the area of computer vision
including the difficult face recognition problems. Training of deep models shows exceptional performance with large datasets, but they
are not suitable for learning from few samples. This paper proposes a modified deep learning neural network to learn face
representation from a smaller dataset. The proposed network is composed of a set of elaborately designed CMNs, RELUs and fully
connected layers. The training dataset is augmented with synthetically generated samples by applying Gaussian and Poisson noise to
each sample of the training set, thus doubling the size of the training set. We experimentally demonstrate that the augmented training
dataset actually improves the generalization power of CNNs. The network is trained using the standard AT&T face database. Using the
proposed approach for limited training data, substantial improvement in recognition rate is achieved.

Published in: Computing, Communication and Metworking Technologies (ICCCNT), 2017 8th International Conference an
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Semantically search IEEE literature
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1. Face recognition using modified deep learning neural network

Deep learning methods, especially convolutional neural networks have achieved significant success in the area of computer vision including the difficult face recognition problems.
Training of deep models shows exceptional performance with large datasets, but they are not suitable for learning from...

IEEE Xplore | IEEE CONFERENCES | 01-JUL-2017 | 2017 &th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (Page(s): 1-5)

2. Frankenstein: Learning Deep Face Representations Using Small Data

Deep convolutional neural netwaorks have recently proven extremely effective for difficult face recognition problems in uncontrolled settings. Te train such networks, very large
training sets are needed with millions of labeled images. For some applications, such as near-infrared (NIR) face...

IEEE Xplore | IEEE PERIODICALS | 23-5EP-2017 | IEEE Transactions on Image Processing \
3

Learning face recognition from limited training data using deep neural networks

Often deep learning methods are associated with huge amounts of training data. The deeper the network gets, the larger is the need for training data. A large amount of labeled
data helps the network learn about the variations it needs to handle in the prediction stage. It is not easy for everyone to...

IEEE Xplore | IEEE COMFERENCES | 01-DEC-2016 | 2016 23rd International Conference on Pattern Recognition (ICPR) (Page(s): 1442-1447)

4. Enlightening Deep Meural Networks with Knowledge of Confounding Factors

Deep learning techniques have demanstrated significant capacity in modeling some of the maost challenging real world problems of high complexity, Despite the popularity of
deep models, we still strive to better understand the underlying mechanism that drives their success. Motivated by observations...
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